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a b s t r a c t

Incidences of Staphylococcus aureus and methicillin resistant S. aureus (MRSA) have risen

worldwide prompting a need to better understand routes of human exposure and whether

standard bacterial water quality monitoring practices adequately account for this potential

threat. Beach water and sand samples were analyzed during summer months for S. aureus,

enterococci, and MRSA at three southern California beaches (Avalon, Doheny, Malibu

Surfrider). S. aureus frequently was detected in samples of seawater (59%, n ¼ 328) and

beach sand (53%, n ¼ 358). MRSA sometimes was detected in seawater (1.6%, n ¼ 366) and

sand (2.7%, n ¼ 366) at relatively low concentrations. Site specific differences were

observed, with Avalon Beach presenting the highest concentrations of S. aureus and Malibu

Surfrider the lowest in both seawater and sand. S. aureus concentrations in seawater and

sand were correlated to each other and to a variety of other parameters. Multiple linear

regression on the combined beach data indicated that significant explanatory variables for

S. aureus in seawater were S. aureus in sand, water temperature, enterococci in seawater,

and the number of swimmers. In sand, S. aureus concentrations were related to S. aureus in

seawater, water temperature, enterococci in seawater, and inversely to surf height clas-

sification. Only the correlation to water temperature held for individually analyzed beaches

and for S. aureus concentrations in both seawater and sand. To provide context for these

results, the prevalence of S. aureus in sand was compared to published fomite studies, and

results suggested that beach prevalence was similar to that in homes.

Published by Elsevier Ltd.

1. Introduction

Microbial contamination of marine waters worldwide is esti-

mated to cause millions of gastrointestinal and acute respi-

ratory infections (ARIs) (Shuval, 2003) and numerous skin

infections (Yau et al., 2009) every year. Marine-borne patho-

gens in the US cost over $900 million per year, with $300

million from gastrointestinal illness from beach recreation

(Ralston et al., 2011). Marine-related food-borne illness from

Staphylococcus aureus was estimated at less than $500,000 per
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year; unfortunately, data were not available to consider costs

due to skin infections.

S. aureus is an opportunistic pathogen carried by 20e40% of

people (Al-Zu’Bi et al., 2004 Kluytmans and Wertheim, 2005;

Kuehnert et al., 2006) with an estimated w0.8% of the US

population (w2.3 million people) colonized by MRSA

(Kuehnert et al., 2006). Incidence of infection from hospital-

and community-onset S. aureus and MRSA is on the rise

worldwide (Chambers, 2001; Zetola et al., 2005). Unlike typical

hospital-associated strains, some strains of community-

associated S. aureus can cause infections in healthy people

with no traditional risk factors for infection (Chambers, 2001;

Baba, 2002; Eguia and Chambers, 2004; Mulvey et al., 2005;

Gorwitz, 2008). Even though most patients are treated as

outpatients, hospitalization rates remain substantial

(Kuehnert et al., 2005; Jarvis et al., 2007). The proportion of skin

and soft tissue infections caused by MRSA has risen

substantially (Moran et al., 2005), and drug resistant infections

place an additional $5 billion burden on the United States

health care system annually (Zhang et al., 2011).

Beaches have been suggested as a potential source of

community-acquired S. aureus infection (Charoenca and

Fujioka, 1995; Soge et al., 2009). Support for this suggestion

derives from concentrations of S. aureus and total staphylo-

cocci being correlated to GI illness and to skin, eye and ear

infections among bathers (Seyfried et al., 1985; Calderon et al.,

1991; Gabutti et al., 2000). S. aureus and MRSA are shed by

swimmers (Robinton and Mood, 1966; Hanes and Fossa, 1970;

Smith and Dufour, 1993; Elmir et al., 2007; Plano et al., 2011),

and both are found in beach seawater and sand (Goodwin and

Pobuda, 2009; Soge et al., 2009; Sinigalliano et al., 2010; Shah

et al., 2011; Enns et al., 2012). S. aureus concentrations have

been correlated to bather density and attributed to human

activity (Calderon et al., 1991; Charoenca and Fujioka, 1995;

Papadakis et al., 1997; World Health Organization, 2003).

It has been suggested that human activity is the source of S.

aureus at the beach (El-Shenawy, 2005). However, S. aureus also

is found in stormwater (Selvakumar and Borst, 2006) and in

coastal streams that drain to the coast (Viau et al., 2011), and

wastewater may be another source of S. aureus to the envi-

ronment. Although some studies have not found viable cells

or genetic signatures in treated municipal wastewater

(Volkmann et al., 2004; Shannon et al., 2007), other studies

have found viable S. aureus and MRSA in raw (Ahtiainen et al.,

1991; Rusin et al., 2003; Börjesson et al., 2009, 2010; Goldstein,

2010) and secondary treated wastewater (Goldstein, 2010). In

addition to human inputs, domestic pets can be reservoirs for

S. aureus and MRSA (Malik et al., 2006; Weese et al., 2006;

Nuttall et al., 2008; Baptiste et al., 2009), and dogs can be

significant contributors of fecal indicator bacteria (FIB), to the

beach (Wright et al., 2009; Zhu et al., 2011).

In an effort to reduce human exposure to microbial

contaminants, recreational waters aremonitored for FIB, such

as enterococci (USEPA, 2004; Dorman and Stoner, 2007). In

turn, beach closures can be costly; for example, a 4-month

closure of a Southern California beach resulted in millions of

dollars of lost revenue, and almost 2 million dollars was spent

in closure investigation fees (Dwight et al., 2005). Despite the

investment in FIB monitoring, there are concerns that it may

overlook pathogens that are not primarily associated with

feces (such as S. aureus), and that a complementary indicator

may be warranted (Cheung et al., 1990). Staphylococci have

been suggested as an alternative or complementary indicator

for marine water quality (Seyfried et al., 1985; Cheung et al.,

1990; Gabutti et al., 2000).

An additional concern is that current FIB guidelines do not

monitor the concentrations of bacteria in beach sands, and

concern is growingwith regard to this exposure route (Heaney

et al., 2009; Yamahara et al., 2009; Hartz et al., 2010; Halliday

and Gast, 2011; Phillips et al., 2011; Shibata and Solo-

Gabriele, 2012). There also is concern that even dead and

injured cells deposited to the environment from treated

wastewater may pose a threat because antibiotic resistance

genes can be taken up by live bacteria (Ahtiainen et al., 1991;

Martinez, 2009; Börjesson et al., 2009, 2010). The transfer of

mecA genes, which confers resistance to methicillin and other

beta-lactam antibiotics, is thought to be relatively rare;

however, as the abundance of mecA DNA has increased in the

environment, the chance of transfer has increased

(Chambers, 2001).

In this study, the prevalence and concentration of S. aureus

and MRSA were studied in both seawater and beach sand.

Results were compared to enterococci seawater concentra-

tions and environmental parameters. Correlation, regression

and multivariate statistical analyses were performed to

identify parameters descriptive of the measured bacterial

concentrations and to explore whether FIB monitoring might

reflect concentrations of S. aureus (a non-fecal pathogen) and

whether FIB and pathogensmight share conditions suggestive

of environmental persistence. The study represents a large

collection of samples analyzed for S. aureus and MRSA from

beach water (>320) and sand (>350) taken on 89 different

sampling days.

2. Materials and methods

2.1. Sample collection, processing, and bacterial
identification

Samples of sand and seawater were collected from beaches at

Avalon, Doheny, and Malibu Surfrider beaches in California.

Bulk water samples were collected as part of the Pacific Coast

Water Study and processed as described previously in

Converse et al. (2012). Processing of samples for S. aureus

analysis was as described in Goodwin and Pobuda (2009) for

Avalon and Doheny beaches. In addition, samples of seawater

(40e300 ml) or sand (w120 g) were collected from Malibu

Surfrider beach from May to September in 2009. A total of 12

beach sites, excluding sites in the lagoons at Malibu and

Doheny, were tested on 89 different sampling days during the

summers of 2007e2009. At Avalon (Fig. 1) samples were

collected on 46 different days; sites A, B, and C were tested in

both 2007 and 2008, whereas site D (Descanso Beach; separate

watershed with less commercial development) was tested

only in 2008. For Malibu Beach (Fig. 1), samples were collected

on 38 different days. Malibu sites A and Bwere near the lagoon

outlet, and Site A also was near a housing development on

septic system. Only a small number of samples were

successfully processed for S. aureus from Doheny Beach (5
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sampling days) and from lagoon sites (e.g., between Malibu

Sites A and B; Fig. 1) due to overgrowth of non-target colonies;

data from lagoon sites were not included in the analysis here.

Filtered samples of water were incubated either on

CHROMagar� Staph aureus (SCA) or CHROMagar� MRSA (BD

Biosciences, San Jose, CA, USA) at 37 �C for 24 h for SCA and

48 h for CHROMagar� MRSA. Plates were refrigerated over-

night prior to counting to allow for better color development.

No enrichment or recovery step was used in this study.

Putative S. aureus colonies were counted, and typically all or

Fig. 1 e Aerial photos of Avalon and Malibu beaches (available from google.com) with sample sites depicted. Doheny beach

is not shown because data from only one site is presented herein.
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sometimes a representative number of colonies (w50%) was

picked, streaked for isolation, and incubated as described

above to confirm/adjust the initial count. Isolates were iden-

tified as S. aureus or MRSA through a combination of

morphology and PCR as previously described (Goodwin and

Pobuda, 2009). Briefly, S. aureus was identified on SCA or

CHROMagar� MRSA plates as a mauve colony with matte

halo. For the study here, 3360 colonies were streaked for

isolation to determine morphology and 846 isolates were

checked by PCR. Previous work (Goodwin and Pobuda, 2009)

showed that combined filter and isolate appearance with

these seawater and sand samples provided a good balance

between sensitivity and specificity, with a positive % agree-

ment (sensitivity), a negative % agreement (specificity), and %

positive predictive accuracy of 84%, 95%, and 99%, respectively

(Goodwin and Pobuda, 2009).

PCR confirmation of isolate identity utilized primers to

amplify the clfA gene (ClfA-F, 50-GCAAAATCCAGCACAA-
CAGGAAACGA-30; ClfA-R, 50-CTTGATCTCCAGCCATAAT TGG-

TGG-30) (Mason et al., 2001) (Fig. 2A) and some samples also

were tested for the presence of the staphylococcal 16S rRNA

gene (Mason et al., 2001). For colonies isolated from

CHROMagar� MRSA and that were positive for S. aureus by

PCR, MRSA confirmation utilized primers to amplify the mecA

gene (mecA-F, 50-TCCAGGAATGCAGAAAGACCAAAGC-30;

mecA-R, 50-GACACGATAGCCATCTTCATGTTGG-30) (Mason

et al., 2001; Goodwin and Pobuda, 2009) (Fig. 2B). Amplifica-

tion reactions were carried out using 1X Phusion� HF Buffer

(containing 1.5 mM MgCl2), 0.2 mM dNTPs (BioRad), 0.5 mM of

each primer, 0.3 mg/ml bovine serum albumin (BSA), 0.5 ml (1

U) Finnzymes PhusionHot Start High Fidelity DNA Polymerase

(NEB, Ipswich,MA), 1 ml of cell colony lysate, and nuclease-free

water for a final volume of 50 ml. Amplification conditions

were as follows: 98 �C for 30 s; 35 cycles of 98 �C for 5 s, 60 �C for

10 s, 72 �C for 15 s; a final 8 min extension at 72 �C. Inhibition
controls consisted of a sample reaction spiked with positive

control DNA (0.5 ml of 10 pg/ml stock). The presence of an

inhibition control band but not a sample band was used to

verify negative reactions (Fig. 2). Inhibited samples were

diluted 1:5 and re-run to verify the negative reaction. Positive

controls consisted of a DNA control and crude lysate control

as described in Goodwin and Pobuda (2009).

2.2. Data analysis

Two main types of data analysis were conducted: i) descrip-

tive statistics to explore general frequency and trend results at

the study sites and ii) correlation and regression analyses to

explore relationships between S. aureus, enterococci, and

other non-microbial parameters measured in the study. To

best deal with samples below the limit of detection (“non-

detects”) and varying detection limits, statistical methods

specially designed to handle censored data were used (Helsel,

2005). This method is regarded as superior to value substitu-

tion for nondetects in data analysis (Helsel, 2010). For

comparison with the censored data approach, data were

analyzed with standard linear regression using traditional

value substitution for nondetects (referred as non-censored

data hereon).

2.2.1. Descriptive statistics
Percent frequency of detection described the percentage of

samples positive for S. aureus, enterococci, or MRSA; calcu-

lated as the number samples with one or more target colonies

out of the total number of samples in which countable data

was obtained for that target. The mean, standard error,

standard deviation, median, confidence intervals, and

percentiles of S. aureus and enterococci concentrations were

computed using the nonparametric KaplaneMeier method

with Efron bias correction via the macros %KMSTATS and %

BootKM for Minitab�16 software (available at www.

practicalstats.com). These macros adapted the KaplaneMe-

ier method to deal with nondetects (left-censored data) by

flipping the data to right-censored before calculation (Helsel,

2005). Descriptive statistics also were calculated by ROS esti-

mation with the macro %bootros; however, results were

equivalent so only the KaplaneMeier statistics were pre-

sented here.

The median detection limit for S. aureus was 0.67 CFU/

100 ml (range 0.33e4 CFU/100 ml), and the median detection

limit for enterococci was 1 CFU/100 ml (range 1e100 CFU/

100 ml). Nondetects with a detection limit greater than 2 CFU/

100 ml for S. aureus and 4 CFU/100 ml for enterococci were

removed for calculation and comparison of descriptive statis-

tics. This removed 8 data points for S. aureus (6 fromDoheny, 2

Fig. 2 e Agarose gel electrophoresis photos for bacteria

isolated from Avalon beach and amplified with A) clfA

primers or B) mecA primers. Pairs of wells contain sample

amplicon and the corresponding inhibition control

(sample plus spike of positive control DNA). * represents

a positive sample, (inh) represents a partially inhibited

sample, L represents a no template control, D represents

a positive DNA control, DL represents a crude lysate from

a S. aureus colony, and LL represents S. aureus crude

lysate, however the culture was not MRSA, therefore, no

mecA amplicon was expected. The first lane of each gel

contains a DNA ladder with the 500 and 700 bp bands

identified.
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fromAvalon2008) and5 for enterococci (3 fromDoheny, 2 from

Avalon 2007). The actual detection limit for each sample was

otherwiseutilized.Novalueswere removed fromthesanddata

(the typical detection limit was 3.03 CFU/100 dry g). For MRSA

data, the number of nondetects was greater than 50%,

rendering the descriptive statistics of limited value due to high

uncertainty. Therefore, MRSA data were described in terms of

the % of samples above threshold and the 95% upper confi-

dence limit (UCL) for the mean (Helsel, 2005).

Median concentrations for S. aureus and enterococci for

three or more groups of censored data were compared using

a KruskaleWallis multiple comparison testing using the %

censKW macro with an alpha 0.05 subcommand. Compari-

sons between two groups of censored data used a Mann

Whitney-U test by executing the %censMW macro. Censored

boxplots were generated using the %cbox macro.

2.2.2. Correlation and regression analyses
Relationships between S. aureus, enterococci, and other non-

microbial parameters were explored via simple correlation/

regression andmultiple linear regression analyses. In general,

a bacterial concentration (S. aureus in seawater, S. aureus in

sand, or enterococci in seawater) was compared to the set of

remaining variables. The following continuous variables were

utilized: 1) S. aureus seawater concentration (ln CFU/L); 2) S.

aureus sand concentration (ln CFU/100 g dry sand); 3) entero-

cocci seawater concentration (ln CFU/L); 4) water temperature

(�C); 5) number of swimmers counted during sampling; 6)

number of persons with water contact determined via ques-

tionnaire; 7) number of dogs; 8) number of birds; 9) tide (m).

The following ordinal variables were utilized: 10) surf height

classification (0 ¼ none; 0.76 ¼ low, 0.3e0.9 m; 1.5¼moderate,

1.2e1.8 m; high ¼ 2.1 þ m); 11) wind classification (0 ¼ none;

1 ¼ light; 2 ¼ moderate; 3 ¼ strong); and 12) turbidity classi-

fication (0 ¼ clear; 1 ¼ calm; 2 ¼ slightly turbid; 3 ¼ choppy;

4 ¼ turbid). Data were analyzed per individual beach and for

the combined data. In addition, analysis of Malibu Surfrider

beach included berm flow (0 ¼ open; 1 ¼ closed).

First, simple correlation was used to test association

between two variables: a bacterial concentration of interest

and another variable (see above). The nonparametric Ken-

dall’s tau correlation coefficient and test of significance was

calculated using the macro %Ckend for Minitab�16 software

(Helsel, 2005). The Kendall’s tau analysis used a rank-based

measure of association and allowed one or both variables to

include nondetects, multiple detection limits, and required no

assumption about the distribution of the data. The macro

returned values for both tau a and tau-b (which ignores ties) in

a range of �1 to 1, with a zero value supporting the null

hypothesis of no correlation between the variables. One

advantage of a Kendall tau test was that it generated a p-value,

which tested whether the value was significantly different

from zero. For comparison, the Kendall tau value runs about

0.2 lower than a Pearson’s r value for an equivalent strength of

correlation (D. Helsel, personal communication). The

nonparametric regression line associated with the Kendall’s

tau, the Akrita-Theil-Sen (ATS) line, was calculated using the

%ATS macro command (Helsel, 2005).

Next, multiple linear regression was conducted between

one dependent andmultiple independent variables (described

above) to obtain a best-fit model describing bacterial concen-

trations. The goal of the regression analysis was descriptive so

interaction and nested terms were not evaluated. Regression

with censored data was performed using the Minitab�16

option for regression with life data (arbitrary censored option)

and maximum likelihood estimation (MLE). Model selection

was based on p-values for the coefficients (typically a ¼ 0.01),

with insignificant terms sequentially removed. Models with

significant terms were further evaluated using the likelihood-

ratio test which compared the model to the null using the

equation �2 � (log-likelihood of the null model � log-likeli-

hood of model); test statistics with p-values less than 0.01

were considered significant. Test statistic p-values were

calculated via the chi-square distribution with the degrees of

freedom equal to the number of estimated coefficients in the

model subtracted by the number of estimated coefficients in

the null model, as per Minitab� instructions.

In addition, typical regression analysis with non-censored

data (i.e., value substitution) also was performed. This anal-

ysis returned information regarding model fit including

residual plots, Anderson-Darling statistics, and variance infla-

tion factors to identify multi-co-linearity. Furthermore, prin-

cipal component analysis, stepwise regression, and best subset

analysis was performed to help understand the data structure

and to inform and confirm results from the multiple linear

regression analysis. Additionally, the distributions of S. aureus

in sand and seawater and of enterococci in seawater were

analyzed using both censored and non-censored data, with

output including probability plots and goodness-of-fit tests.

3. Results

3.1. Microbe detection frequency and concentrations at
the study sites

3.1.1. S. aureus in seawater
S. aureus was frequently detected in seawater. The average %

detection frequency for seawater was 59% (n ¼ 328) for the

combined beaches (Table 1). For Avalon, the average %

detection frequency was 76% for the two summers studied.

For Malibu Surfrider, the average % detection frequency was

46%. Only eight Doheny seawater samples were successfully

enumerated for S. aureus due to overgrowth of plates, and all

were positive for S. aureus (100%). The mean concentration of

S. aureus in the seawater samples estimated by KaplaneMeier

statistics was 10 CFU/100 ml and the median concentration

was 0.83 CFU/100ml, with data for individual beaches given in

Table 1.

KruskaleWallis multiple comparisons tests (a ¼ 0.05)

showed that the median seawater concentration of S. aureus

was significantly lower at Malibu Surfrider compared to the

other beaches (Fig. 3). Within Malibu, the four beach sites

(Fig. 1) had similar seawater concentrations (although site B

was significantly lower than site D). Site A, with presumed

septic influence, was not significantly different from any of

the other sites. Within Avalon, the four beach sites (Fig. 1) also

were similar to one another (although Site B in 2008 was

significantly higher than Site C in 2007). Overall, S. aureus at

Avalon was significantly higher in 2008 than 2007 (7.5 versus

wat e r r e s e a r c h x x x ( 2 0 1 2 ) 1e1 3 5

Please cite this article in press as: Goodwin, K.D., et al., A multi-beach study of Staphylococcus aureus, MRSA, and enterococci in
seawater and beach sand, Water Research (2012), doi:10.1016/j.watres.2012.04.001

http://dx.doi.org/10.1016/j.watres.2012.04.001
http://dx.doi.org/10.1016/j.watres.2012.04.001


3.0 CFU/100mlmedian concentration, a¼ 0.05). Except for Site

B in 2008, Site D was not lower than the other sites, even

though Site D was envisioned as a control site because it was

located in a different watershed with less commercial devel-

opment adjacent to the beach (Fig. 1). There was only one

beach site sampled at Doheny beach, thus no site compari-

sons were possible.

3.1.2. Enterococci in seawater
Enterococci concentrations are presented only for samples in

which S. aureus analysis also was conducted. Enterococci were

frequently detected in seawater, with an average % detection

frequency of 79% (n ¼ 331) for the beaches combined (Table 1).

For Avalon, the average % detection frequency for seawater

was 88% for both summers. At Malibu Surfrider, the average %

detection frequency was 72%. Only eleven Doheny seawater

samples had corresponding S. aureus data; all of them were

positive for enterococci (100%). The mean concentration of

enterococci in all the seawater samples estimated by

KaplaneMeier statistics with Efron bias correction was

42 CFU/100 ml and the median concentration was 6 CFU/

100 ml, with data for individual beaches given in Table 1.

KruskaleWallis multiple comparisons tests (a ¼ 0.05)

showed that the median seawater concentration of entero-

cocci was significantly lower at Malibu compared to the other

beaches (Fig. 3). At Malibu, the median enterococci concen-

tration at site A (with presumed septic influence) was signifi-

cantly lower than sites B and E, but did not differ significantly

from Site D. At Avalon, median seawater concentrations of

enterococci were not statistically different between 2008 and

2007, in contrast to S. aureus. At Avalon, the median entero-

cocci concentration at Site A in 2008 was significantly lower

than sites B and C in both 2007 and 2008, despite the fact that

the sites were located close to one another (Fig. 1).

3.1.3. S. aureus in sand
S. aureus was frequently detected in beach sand, similar to

that observed for seawater. The average % detection

frequency was 53% (n ¼ 358) for the combined beach data

(Table 1). For Avalon, the average % detection frequency was

62% for both years combined. For Malibu Surfrider, the

average % detection frequency was 46% for sand. Although

only a few samples were successfully analyzed for Doheny

beach (n ¼ 11), the detection frequency was similar to that

observed at the other beaches (45%). The mean concentration

of S. aureus in the sand samples estimated by KaplaneMeier

statistics with Efron bias correctionwas 187 CFU/100 dry g and

themedian concentration was 7.7 CFU/100 dry g, with data for

individual beaches given in Table 1.

KruskaleWallis multiple comparisons tests (a ¼ 0.05)

showed that the median concentration of S. aureus in sand

was lower at Malibu than at Avalon (Fig. 3). Concentrations of

S. aureus in sandwere higher at Avalon in 2008 than in 2007, as

was found for the seawater concentrations. No significant

differences among individual beach sites were observed for

Avalon or Malibu.

3.1.4. Enterococci in sand
Enterococci concentrations are presented only for those

samples which also had collection for S. aureus analysis. The

Table 1 e Detection frequency and concentration of S. aureus and MRSA in seawater and sand. NC[not calculated.

Site S. aureus Enterococci MRSA

Detection frequency seawater

All 59% 79% 1.6%

Concentration seawater (CFU/100 ml)

Mean (95% CI);

median (n)

Mean (95% CI);

median (n)

95% UCL of mean;

range observed (n)

All 10 (7.3e15);

0.83 (n¼ 328)

42 (28e59);

6 (n¼ 331)

0.65;

0.33e2.5 (n¼ 366)

Avalon 23 (15e33);

5.0 (n¼ 132)

68 (45e105);

30 (n¼ 132)

NC

Doheny 5.3 (2.7e7.9);

4.0 (n¼ 8)

148 (15e388);

20 (n¼ 11)

NC

Malibu 1.8 (1.3e2.5);

0.69 (n¼ 188)

17 (8.8e27);

2.0 (n¼ 188)

NC

Detection frequency sand

All 53% 71% 2.7%

Concentration sand (CFU/100 dry g)

Mean (95% CI);

median (n)

Mean (95% CI);

median (n)

95% UCL of mean;

range observed (n)

All 187 (98e390);

7.7 (n¼ 358)

5086 (3331e10,755);

13 (n¼ 238)

2.5;

5e78 (n¼ 366)

Avalon 402 (192e830);

111 (n¼ 159)

24,009 (16,197e47,930);

3198 (n¼ 49)

NC

Doheny 58 (37e117);

25 (n¼ 11)

8646 (1146e16222);

3976 (n¼ 5)

NC

Malibu 21 (12e40);

4.9 (n¼ 188)

54 (39e75);

12 (n¼ 184)

NC
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average % detection frequency was 71% (n ¼ 238) for the

combined beaches (Table 1). For Avalon (2008), the average %

detection frequency was 94% (n ¼ 49). Enterococci concen-

trations in terms of CFU/dry g sand were not available for

Avalon in 2007. For Malibu Surfrider, the average % detection

frequency was 63%. Only five Doheny sand samples had cor-

responding S. aureus data; all of them were positive for

enterococci (100%). The mean concentration of enterococci in

sand samples estimated by KaplaneMeier statistics with

Efron bias correction was 5086 CFU/100 dry g and the median

concentration was 13 CFU/100 dry g, with data for individual

beaches given in Table 1.

KruskaleWallis multiple comparisons tests (a ¼ 0.05)

showed that the median concentration of enterococci in sand

at Malibu was significantly lower than at the other beaches

tested (Fig. 3). No significant differences across beach sites

were observed except that the median enterococci concen-

tration in sand at Malibu (Fig. 1) was significantly lower at Site

E than Site B.

3.1.5. MRSA in seawater and sand
MRSAwas foundonoccasion in seawaterandsandat relatively

low concentrations. Of the 12 beach sites tested, the overall %

detection frequencywas1.6% (6/366) for seawaterand2.7% (10/

366) for sand (Table 1). The % detection frequency varied by

beach with Avalon having the highest frequency of detection

for seawater (3.8%, 5/131) and sand (5.9%, 8/136). In contrast,

the % detection frequency at Malibu was 0.4% (1/224) for

seawater and 0.5% (1/221) for sand. No seawater samples were

positive forMRSAatDoheny (n¼ 14) but 14% (1/7)werepositive

in the sand. Greater than 50% of the samples were nondetects;

therefore, the concentration data are presented in terms of the

95% upper confidence limit (UCL) (Helsel, 2005) along with the

range of concentrations observed (Table 1). The 95% UCL

indicates that there was only a 5% chance of encountering

a concentration higher than that given in Table 1.

3.1.6. Enterococci concentrations relative to S. aureus
Enterococci concentrations were higher than S. aureus in both

seawater and sand. For seawater, the ratio of enterococci to S.

aureus was fairly consistent across beaches and generally less

than an order of magnitude. The median seawater concen-

tration of enterococci was 7� higher than S. aureus for the

combined beaches, ranging from 3e6� higher for the indi-

vidual beaches. For sand, the ratio of enterococci to S. aureus

was more variable. The median sand concentration of

enterococci was 2� higher than S. aureus for the beaches

combined, but the range across beaches was 2e159�.

3.2. Relationships between S. aureus, enterococci, and
non-microbial parameters measured in the study

3.2.1. Simple correlations and simple linear regression
Kendall tau analysis and simple linear regression with life

data were comparable and showed that S. aureus concentra-

tions in seawater and in sand were correlated to a number of

Fig. 3 e Box plots of S. aureus (SA) and enterococci (ENT) concentrations in A) seawater and B) sand generated by

KruskaleWallis analysis (a [ 0.05) for samples collected from beach sites in Avalon during 2007 (AV2007) and 2008

(AV2008), Doheny in 2008 (DH2008), and Malibu Surfrider in 2009 (SR2009). Box width is proportional to sample size.

Horizontal lines depict the maximum detection limit (Max DL) for the data. For enterococci in seawater, the EPA recreational

water quality guidelines for a single sample and the geometric mean (Geomean limit) also are shown.
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the analyzed variables (Table 2). S. aureus concentrations in

seawater and sand were strongly correlated to each other

(Table 2). Both seawater and sand concentrations were

correlated to water temperature, the seawater concentration

of enterococci, and surf height classification (inversely corre-

lated). In addition, S. aureus in seawater (but not in sand) was

significantly correlated with the number of swimmers as

determined by observation at the time of collection. S. aureus

concentrations were not correlated to the number of people

having water contact as determined by questionnaire,

although this was the parameter used in subsequent epide-

miology analysis (Colford et al., 2012). S. aureus in sand (but

not seawater) was inversely correlated to wind strength

classification. Wind, tide height, and turbidity all became

significant at a ¼ 0.05 (Table 2). Only water temperature and

the number of swimmers were significantly correlated to the

S. aureus concentration in seawater for both the combined

beach data and for Avalon and Malibu beaches analyzed

separately (Table 2). Doheny beach was not analyzed sepa-

rately due to the small sample size. Other significant corre-

lations for individual beaches are given in Table 2.

Kendall tau analysis was useful for comparing concentra-

tionsof bacteria because it couldaccount fornondetects inboth

variables and made no assumptions about distribution shape.

For the combined beach data, the relationship between the S.

aureus concentration in seawater and sand was described by

the following ATS line: S. aureus (ln CFU/L) ¼ 0.18 þ 0.67 � S.

aureus (ln CFU/100 dry g) (tau-b ¼ 0.29, p < 0.001). With the

concentration in sand as the dependent variable, the relation-

ship was described by the following ATS line: S. aureus (ln CFU/

100dry g sand)¼ 0.053þ 0. 81� S. aureus (lnCFU/L) (tau-b¼ 0.29,

p < 0.001). The relationship between the seawater concentra-

tions of S. aureus and enterococci was described by theATS line

S. aureus (ln CFU/L) ¼ 9.30 þ 0.49 � enterococci (ln CFU/

L seawater) (tau-b ¼ 0.26, p < 0.001). The relationship between

the sand concentrations of S. aureus and enterococci in

seawater was described by the ATS line S. aureus (ln CFU/

100 dry g sand) ¼ �0.0061 þ 0.64 � enterococci (ln CFU/L

seawater) (tau-b ¼ 0.27, p < 0.001).

For Malibu Surfrider beach, the seawater concentration of S.

aureuswasweakly correlated to whether or not the outlet to the

lagoon(Fig.1,MalibuSiteC)wasopen( tau-b=0.18,p¼0.01;open

was coded as 0, therefore the relationship was inverse). There

was no significant relationship between seawater enterococci

concentration and lagoon flow, and there was no significant

relationship between sand S. aureus concentration and lagoon

flow. Attempts to quantify S. aureus in the lagoon water were

unsuccessful due to overgrowth by non-target bacteria.

Although the focus of this study was S. aureus, a limited

number of correlation analyses were performed with entero-

cocci treated as the dependent variable. In addition to the

correlation between enterococci and S. aureus described above,

the seawater concentration of enterococci was weakly corre-

lated to water temperature for the combined beach data ( tau-

b ¼ 0.18, p < 0.001). However, water temperature was not

significantlycorrelatedtoenterococci for the individualbeaches,

in contrast to the findings for S. aureus. The concentration of

enterococci was not correlated to the number of swimmers for

any of the beaches. It is interesting to note that water tempera-

turewas significantly correlated to the number of swimmers for

the combined beaches ( tau-b ¼ 0.25, p < 0.001) and for Avalon

( tau-b ¼ 0.35, p < 0.001) and Malibu ( tau-b ¼ 0.19, p < 0.001)

analyzed separately. There was no significant difference in the

number of swimmers between beaches (data not shown).

3.2.2. Multivariate and multiple linear regression analysis
results
Multivariate examination was performed on the combined

beach data using principal component analysis. Principal

component analysis was consistent with the results obtained

by stepwise and best subset regression, and the best descrip-

tion by principal component analysis was obtained with the

parameters S. aureus seawater concentration, S. aureus sand

concentration, and water temperature (data not shown).

Results were consistent with the analyses by Kendall tau and

simple linear regression with life data (MLE with one depen-

dent and one independent variable) (Table 2).

The best-fit for MLE analysis for S. aureus in sand was

obtained using multiple linear regression with life data

assuming a lognormal distribution (Table 3; all coefficient

p-values significant at a ¼ 0.01). For S. aureus in seawater, the

Table 2 e Results of analyses by Kendall tau correlation
and simple linear regression with life data, each
calculated for one dependent (S. aureus concentration in
seawater or sand) and one independent variable for the
combined beach data. Coefficients are given from the
Akritas-Theil-Sen (ATS) line of the Kendall tau analysis
and from MLE (in parenthesis) for significant p-values
(a [ 0.01). NS [ not significant.

Dependent variable

Seawater
S. aureus
(ln CFU/L)

Sand
S. aureus

(ln CFU/100 dry g)

Independent
variable

Coefficient from ATS line (from MLE)

S. aureus sand

(ln CFU/100 dry g)

0.67 (0.63)b e

S. aureus seawater

(ln CFU/L)

e 0.81 (0.72)

Water temperature

(�C)
0.66 (0.62)a 0.68 (0.64)

Enterococci

(ln CFU/L)

0.49 (0.44) 0.64 (0.59)

Surf height

classification (m)

�1.4 (�1.4) �0.94 (�2.0)

#Swimmers

(counted)

0.046 (0.028)a NS

# Swimmers

(reported)

NS NS

Wind classification NSc �1.18 (�0.92)

Tide height (m) NSc NSc

Turbidity classification NSc NSc

Birds (#) NS NS

Dogs (#) NS NS

a Also correlated for Avalon (2007, 2008 combined) and Malibu

beaches analyzed separately.

b Also correlated for Malibu beach analyzed separately.

c Significant at a ¼ 0.05.
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best-fit was obtained using multiple linear regression analysis

with life data assuming a Weibull distribution (Table 3; all

coefficient p-values significant at a¼ 0.01, except # of swimmers

ata¼ 0.03).Variable inflation factors (VIF) revealedmoderate co-

linearity between S. aureus concentrations in seawater, entero-

cocci in seawater, S. aureus in sand, and water temperature.

4. Discussion

Of the many relationships identified by simple correlation

(Table 1), some parameters repeatedly emerged as significant

descriptive variables for S. aureus in seawater regardless of

analysis methods or approach for nondetects (censored vs.

non-censored). These parameters were S. aureus sand

concentration, water temperature, the number of swimmers,

and the enterococci seawater concentration. Of these

parameters, water temperature appeared to be particularly

salient because it was correlated to S. aureus in both seawater

and sand for both the combined data and for beaches

analyzed individually (Avalon and Malibu). The only other

correlation that held for both combined and individual beach

data was the number of swimmers to S. aureus in seawater. In

addition, the correlation between S. aureus concentrations in

sand and in seawater held for both the combined data and for

Malibu beach analyzed separately.

The correlation between the S. aureus concentration in

sand to the concentrations of S. aureus and enterococci in

seawater supports other studies that suggested beach sands

can be a source of both fecal indicator bacteria and pathogens

to adjacent waters (Lee et al., 2006; Bonilla et al., 2007;

Yamahara et al., 2007, 2009; Goodwin et al., 2009; Halliday and

Gast, 2011; Sabinro et al., 2011; Zhu et al., 2011; Shah et al.,

2011). Furthermore, studies have implicated sand itself as an

important vehicle for human exposure (Whitman et al., 2009)

and epidemiology studies indicated that sand can pose

a health risk (Bonilla et al., 2007; Heaney et al., 2009, 2012). In

contrast to correlations seen between pathogens and indica-

tors in some studies, other studies have found S. aureus to not

be correlated to a variety of other indicators (El-Shenawy,

2005), including enterococci (Calderon et al., 1991;

Selvakumar and Borst, 2006; Yamahara et al., 2012; Enns et al.,

2012). The study here comprised a relatively large data set and

days of sampling which may have allowed more patterns to

emerge (Table 1). A common sand reservoir for both S. aureus

and enterococci perhaps could explain the correlations seen

here; however, it should be noted that the correlation existed

only for the data combined across beaches but not for the

beaches analyzed individually.

The positive correlation of water temperature to S. aureus

concentrations in sand and seawater supports the concern

that pathogens may grow and/or persist in the environment

with sand as a source to adjacent waters, analogous to the

case for FIB (Beversdorf et al., 2007; Shah et al., 2011; Phillips

et al., 2011). In support of this suggestion, other studies have

shown that S. aureus and MRSA can survive for days in river

and seawater, with better survival in seawater because of

a preference for higher salinity (Gabutti et al., 2000; Tolba

et al., 2008; Levin-Edens et al., 2011). Both methicillin sensi-

tive S. aureus (MSSA) and MRSA can survive on environmental

surfaces and are resistant to desiccation (Cimolai, 2008). In

addition, the ability for S. aureus to be resuscitated from

a viable but non-culturable (VBNC) state has been demon-

strated (Masmoudi et al., 2010); therefore, survival in sand and

seawater appears plausible. Potential to transfer virulence

and antibiotic resistance genes also is a concern, particularly

if genes may be obtained from wounded or dead organisms

contained in treated wastewater (Börjesson et al., 2009, 2010;

Goldstein, 2010).

Compared to this study (Table 1), similar detection

frequencies for S. aureus and MRSA in seawater (37% and 1%,

respectively; Sinigalliano et al., 2010) and similar median

concentrations (Shah et al., 2011) were reported for

a subtropical beach using a substantially smaller data set.

During a ten-day intensive study of this same beach, the

detection frequency for S. aureus in knee-deep seawater was

19% and the detection frequency in sand ranged from 0.42 to

10%, depending on the sampling location (Enns et al., 2012).

Compared to this study, similar MRSA but lower S. aureus

prevalence in sand was observed for a survey of 37 beaches

along the entire California coast (prevalence by beach: 13.5% S.

aureus, 3%MRSA; Yamahara et al., 2012; prevalence by sample:

8.5% S. aureus, 1.7% MRSA; Goodwin unpublished results).

Both the California beach survey and this study used the same

methodology, but the beach survey investigated only dry sand

and included beaches with few visitors (Yamahara et al.,

2012); whereas the collections here were all moist sand from

beaches with high visitor numbers. S. aureus prevalence in

freshwater coastal streams in O‘ahu, Hawaii (86%, 19/22; Viau

et al., 2011) was higher than that observed here, with similar

concentrations (below detection e 5.2 CFU/100 ml for the

December sampling; Goodwin unpublished results).

It should be noted that the concentrations here are

expected to be biased low despite the positive performance of

SCA and C-MRSA with beach water and sand samples

(Goodwin and Pobuda, 2009) because the performance only

applies to countable plates. In this study, it was often the case

that no data were obtained from samples of the poorest water

quality because plates were overgrown by non-target

Table 3 e Best-fit multiple linear regression models (MLE with censored data) for S. aureus in beach seawater and sand.

Dependent variable MLE modela

S. aureus seawater

(ln CFU/L)

¼�4.6 þ 0.58 � S. aureus (ln CFU/100 dry g sand) þ 0.22 � water temperature (�C) þ 0.22

� enterococci (ln CFU/L seawater) þ 0.018 � swimmers (# counted at time of sample collection)

S. aureus sand

(ln CFU/100 dry g)

¼�6.9 þ 0.45 � S. aureus (ln CFU/L seawater) þ 0.37 � water temperature (�C) þ 0.24 � enterococci

(ln CFU/L seawater) þ �0.77 � surf height classification (m)

a Assumed distribution for S. aureus: lognormal in sand, Weibull in seawater (result for shape parameter, b ¼ 0.56).
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microbes. Furthermore, it appeared that S. aureus could be

outcompeted on the plates by non-target organisms because

sometimes it could be identified on less crowded filters but not

on more crowded filters that had received a higher volume of

water. Therefore, the concentration estimates reported here

should be considered conservative.

It should be helpful to view the potential risk from S. aureus

and MRSA via beach exposure in context with other exposure

routes, such as fomites or food products (Lindenmayer et al.,

1998; Scott et al., 1982; Scott et al. 2008; Miller et al., 2009;

Scott et al., 2009; Waters et al., 2011). To enable comparison,

the concentrations given here can be converted to CFU per

area using the specific surface area of coarse sand (w0.01 m2/

g; Yerima and Ranst, 2005), resulting in equivalent concen-

trations for units in CFU/dry g and CFU/m2. Given that the

typical detection limit for S. aureus in sand was 3.03 CFU/

100 dry g, the frequency of detection for 25 cm2 sampleswould

drop from 53% to 42%, which is comparable to that reported in

homes by Scott et al. (1982) (to express Table 1 sand concen-

trations in units of CFU/25 cm2, divide values by 400).

Ultimately, the significance of S. aureus and MRSA preva-

lence and concentration in the environment depends on the

infectious dose (Shibata and Solo-Gabriele, 2012) for both

ingestion and, importantly, wound inoculation, particularly

under real-world conditions (e.g., multiple organisms and

particles contaminating the wound). One study of S. aureus

surface inoculation of intact human skin found an ED50 of 10
3/

cm2, with an inoculation of 40/cm2 causing infection in 20% of

subjects; growth of the organisms after inoculation was

necessary to cause infection (Singh et al., 1971; Rose and Haas,

1999). The ability for S. aureus to infect intact skin appeared

dependent on a variety of parameters, including initial dose,

maintained moisture of the skin surface, and competition

with indigenous flora. An inoculation dose lower than 40/cm2

was not tested; however, this dose was almost 1000 times

higher than the highest concentration in sand observed here

(using the conversion discussed above). However, the infec-

tious dose of S. aureus is substantially reduced by factors such

as foreign bodies or synergy with other contaminating

microbes (Elek, 1956; Schaad, 1983; Brook et al., 1984; Rissing

et al., 1987; Hendricks et al., 2001). Both of these modifying

conditions could be expected in beach settings, particularly

for contamination of a woundwith sand. Therefore, obtaining

amore accurate assessment of infectious dose under a variety

of real-world conditions is an important area for future

research. In any case, based on human studies (Singh et al.,

1971), rinsing and drying the skin should help provide

protection, particularly for intact skin.

5. Conclusions

� The frequent detection (>50%) of S. aureus seawater and

beach sand samples and the correlation with water

temperature supports the concern that bacterial pathogens

exist and may persist in the environment, including at

beaches.

� Although the correlation between S. aureus and the number

of swimmers was weak and apparent only for S. aureus in

seawater and not sand, the correlation held for data

analyzed by individual beach and combined across beaches.

These data support the possibility that beach goers are one

source of this organism but suggests that other sources not

identified in this study are important, as well.

� Although the prevalence of MRSA was much lower (<3% of

samples) than for S. aureus, the data indicate the potential

for virulent and antibiotic resistant strains to be encoun-

tered in this environment.

� S. aureus was correlated to enterococci, even though S.

aureus is not considered a typical fecal organism. Perhaps

the finding that S. aureus can sometimes be found in

wastewater and in companion animal feces explains this

observation. However, the relationship held only for the

combined beach data, suggesting the need for further study;

particularly to ensure whether current FIB guidelines are

adequately protective against this pathogen.
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