

Comparison of three selective media for the recovery of Extended Spectrum *β*-Lactamase (ESBL)-producing *Enterobacteriaceae*

M. Jones, A. Sweeney, E. Stoeppler, M. Miller, and P. Gilligan

Clinical Microbiology-Immunology Laboratories UNC Hospitals

Contact: pgilliga@unch.unc.edu 919-966-6313

REVISED ABSTRACT

Background: Over the past two years, an increasing number of ESBL-producing organisms have been recovered from our patient population. ESBL-producing organisms are particularly problematic in our bone marrow transplant population since empiric sepsis therapy in febrile neutropenic patients may not cover these organisms.

Methods: We compared the recovery of ESBL-producing organisms from rectal swabs submitted for VRE screening on three media: vancomycin, amphotericin B, ceftazidime, and clindamycin (VACC) agar (Remel, Lenexa, KS), MacConkey, ceftazidime, cloxacillin (MCC) agar, and CHROMagar (CA-ESBL) agar (Lexington, KY). After inoculation of VRE screening plates, the swab content from 566 specimens was suspended in 500 ul of sterile saline and 100 ul was inoculated onto each plate. Plates were examined at 24 and 48 hours. Plates from which Gram-negative bacilli (GNB) were recovered were screened for ESBL production using ceftazidime (CZ), cefotaxime (CX), CZ-clavulanate (CA), and CX-CA disc diffusion, ampC production using cefotetan, cefotetan-cloxacillin Etests, and the modified Hodge test following ertapenem screening. Results: No growth for all three media was observed for 355 specimens. Growth was observed on at least one medium for 211 specimens. ESBL-producing organisms were recovered from only 26 (4.5%) patient specimens. VACC was the most sensitive at 92%, MCC at 85% and CA-ESBL at 81%. Unfortunately none of the media was specific; ampC-producing organisms were found in 27 specimens (4.7%): with 25 isolates growing on VACC, 19 on CA-ESBL and 6 on MCC. Three Hodge test positive isolates were recovered on all three media. Other MDR-GNBs were recovered as well with 45 positive cultures on CA-ESBL 42 on VACC, and 32 on MCC. Additionally Gram-positive organisms grew on 86 VACC, 4 MCC, and 11 CA-ESBL. Break through growth was seen predominantly after 48 hr especially with gram positives so limiting incubation to 24 hours would greatly improve specificity and positive predictive value. Conclusions: Recovery of ESBL-producing organisms was similar on all three media.. Screening of rectal swab for ESBL-producing organisms is very labor intensive due to the poor specificity of currently available media.

INTRODUCTION

Multi-drug resistant (MDR) gram negative bacilli (GNB) are becoming an increasing clinical challenge. MDR-GNB often produce beta-lactamase enzymes that fall into three broad categories:

- 1. extended spectrum beta-lactamases (ESBL)
- 2. ampC beta-lactamase hyper-producers (ampC) 3. carbanenemases
- Several factors have resulted in our having heightened interest in beta-lactamase
- producing MDR-GNB:
- An increase in the number of ESBL-producing *Enterobacteriaceae* clinical isolates from 1.9% in 2009 to 3.2% in 2010 at our institution.
- The recognition of the rapid global spread of "new" beta-factamases such as NDM. VIM, and KPC. Treatment options for organisms with these resistance mechanisms are very limited, colisitin or tiggecytline. Because of this, it has been recommended that fecal/recta sprearing for these conjanisms be undertaken in exposed individuals although no guidance has been offered on how this might best be done.(1)
- 3. The recognition that practice guidelines for empiric therapy of high-risk neutropecit patients currently does not recommend aquents active against ESBLproducing organism except in clinical situations where ESBL status is known (2). We recently head a high risk neutropenic patient tratted with cefepine and vancomycin who developed septic shock and died. He was found to have bacterenia due to an ESBL-producing *Ecolorichia* of strain. As a result our hematologists asked us to examine the problem of ESBL-producing organism colonization in our BMTU.
- Currently there is no recommended method for the detection of fecal carriage of ESBL-producing organisms.

This study has three goals.

- Determine which of three media, vancemycin, amphoteracin B, ceftazidime and clindamycin (VACC) blood agar (Remel, Lenexa Ks), MacConkey cloxacillin ceftazidime (MCC) agar and CHROMAgar ESBL (CA-ESBL) agar (Gibson Laboratories Lexington, KY) is has the best performance at recovering ESBLs from rectal swabs.
- 2. Determine the frequency with which ESBL-producing organisms are found in the general hospitalized patient population our institution.
- 3. Determine the frequency with which ESBL-producing organisms are recovered from rectal swabs of patients in our Bone Marrow Transplant Unit.

R	ES	U	Ľ	٢S	

Organism type isolated	VACC	мсс	CA-ESBL
ESBL (n = 26)	24	22	21
H AmpC (n = 27)	25	6	19
carbapenemase (n = 3)	3	3	3
ınr	42	32	45
gpc	79	0	0
Yeast	18	4	11
No growth	375	499	467

Escherichia coli	13*
Entrobacter species	6*
Klebsiella species	4*
Hafnia species	2
Citrobacter species	1
Raoultella species	1
Serratia species	1

	VACC	MCC	CA-ESBL		
Sensitivity	92	85	81		
Specificity	69	91	86		
PPV	12	31	21		
NPV	99	99	99		

Table 3B: Performance of VACC, MCC, CA-ESBL for detection of ESBL: gram-negative growth only			
	VACC	MCC	CA-ESBL
Sensitivity	92	85	81
Specificity	85	92	87
PPV	23	33	23
NPV	99	99	99

Table 4: ESBL detection in BMTU specimens on VACC, MCC, CA-ESBL 48-hours incubation	

rganism type isolated	VACC	MCC	CA-ESBL
ESBL	2*	2	2
Н АтрС	1	1	1
carbapenemase	0	0	0
gnr other	3	3	4
gpc	8	0	0
Yeast	0	0	0
No growth	97	102	101

CONCLUSIONS

- ESBL-producing organisms were found in 4.5% of 566 fecal samples cultured on the three test media.
- VACC plates were the most sensitive for the detection of ESBL-producing organisms @ 92%; however, the positive predictive value of ESBL detection when a gram negative bacilit grew on this medium was on 23%.
- MCC had a better specificity with a positive predictive value of 33% in part because fewer hyper ampC-producing organisms were found on this medium (6/27 vs 25/27 for VACC).
- 4. CA-ESBL was the least sensitive medium @ 81%; its positive predictive value of growth of a gram negative organism on this medium was only 23% making it the weakest performing of the three media evaluated for detection of ESBL-producing organisms.
- 5. All three carbapenemase producing organisms were detected on all three media.
- Approximately 1/5 of the specimens studied came from our BMTU. The number of ESBL-producers (N=2) was too low to warrant statistical analysis. Both isolates came from a single patient.
- 7. We concluded that routine screening of neutropenic hone marrow transplant patients for ESB-producing organisms would be extremely those intensive using available media given their poor positive predictive value. This observation is consistent with those of others using other selective media, L3-5) Additionally low detection rates in our BMTU makes this practice of questionable benefit for our BMT patients especially since feeal carring of ESB-producing, organisms has not been associated with infection due to those organism(6). For now, we have abandeed this practice.

MATERIALS AND METHODS

- Specimens submitted for vancomycin resistant enteroscoci sercening were plated on appropriate medium and the soaw base then placed in 590 ul of staline. The remaining specimen was suspended and 100 ul was insculated outo each of three plates, vancomycin, amphotericin B, eclaraidime, and (Hadmaynic) (XACC) gater, Lenexa, KSJ, MacCouley, eclaraidime (d ug/m), elouacillin (200 ug/m), (MCC) gater, Lenexa, KSJ, MacCouley, enderside and the state of the soaw of the state specimen was suspended and 100 ul was incellated onto each of three plates.
- Plates were incubated @ 3%C and examined at 24 and 48 hours. Plates from which Gram-negative bacilli (GNB) were recovered were screened for ESBL production using ceftazidime (CZ), ceforaxime (CX), CZ-chavalanate (CA), and CX-CA disc diffusion, ampC hyperproduction using ecfotetan, cefotetan-closacillia Exets, and the modified Hodge test following ertapement screening. Growth Of yeast and gram positive cocet was based on colonial morphology and gram stain. All ESBL-producing strains were speciated using standard holoratory methods.
- 3. This study was approved by the Biomedical IRB of the University of North Carolina Testing

REFERENCES

- Centers for Disease Control and Prevention 2010. Detection of Enterobacteriaceae isolates carrying metallo-beta-lactamase-United States 2010 MMWR 59:1212
- Freifeld AG, et al. 2011. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 Update by the Infectious Diseases Society of America. Clin Infect Dis:S2(4):427-31.
- 3. Huang TD, et al. 2010 Evaluation of Brilliance ESBL agar, a novel chromogenic medium for detection of extended-spectrum-beta-lactamase-producing *Enterobacteriaceae*. J Clin Microbiol;48(6):2001-6.
- Sasaki T, et al. 2010. High prevalence of CTX-M beta-lactamase-producing *Enterobacteriaceae* in stool specimens obtained from healthy individuals in Thailand. J Antimicrob Chemother;56(4):666–8.
- Paniagua R, Valverde A, Coque TM, Baquero F, Canton R. 2010. Assessment of prevalence and changing epidemiology of extended-spectrum beta-lactamase-producing *Enterobacteriaceae* fecal carriers using a chromogenic medium. Diagn Microbiol Infect Dis;67(4):376-9.
- Arnan M et al. 2011. Risk factors for, and clinical relevance of, faecal extended-spectrum beta-lactamase producing *Escherichia coli* (ESBL-EC) carriage in neutropenic patients with haematological malignancies. Eur J Clin Microbiol Infect Dis;303(3):355-60.